Effective Use Of Afghan Sheep In Creation Of Athars High Quality Karakul Sheep

Shonazarov Dilmurod Babirovich¹, Boboqulov Nasillo Asadovich², Jumanov Sobir Murodovich³

¹Doctorate student, Scientific Research Institute of Karakul and Desert Ecology, Samarkand, Uzbekistan
²Director, Scientific Research Institute of Karakul and Desert Ecology, Samarkand, Uzbekistan
³PhD of veterinary science, teacher, Samarkand institute of veterinary medicine, Samarkand, Uzbekistan

Abstract – The article provides data on the use of pedigree sheep-producers brought from the Republic of Afghanistan during the creation of athars of karakul sheep in the experimental station of karakul breeding of the Kashkadarya region.

Keywords – Hydroponics, Grass Barley, Light, Heat, Humidity, Probe, Matsion, Ration, Inseminator, Zootechnics, Surgery.

I. INTRODUCTION

In accordance with the Decree of the President of the Republic of Uzbekistan dated September 2, 2020 PF-6059 "On further development of silkworm breeding and karakul breeding in the Republic of Uzbekistan" in accordance with the established procedure "About measures", it is necessary to intensify efforts to ensure the efficient use of infrastructure resources in these sectors, to improve reproduction, to strengthen the food base, as well as to carry out systematic work to improve the quality and competitiveness of products.

By July 1, 2021, karakul clusters will be established in all pastures of the country to create a food base, increase the number of small horned cattle, as well as slaughter, processing of hides and wool, meat and dairy products, semi-finished and finished products. The fact that last year was a fruitful season for agriculture in our country is certainly explained by the joyful achievements. In particular, a training and practical seminar was organized at the Karakul Scientific Breeding Experimental Station LLC in order to share experiences on the responsibilities of livestock breeders working in all sectors of Kashkadarya.

Fifty inseminator and zootechnicians from 9 karakul companies in the region exchanged experiences on artificial insemination of karakul sheep in the training courses held at the experimental station before the autumn season in order to organize high-quality artificial insemination of karakul sheep.

II. MATERIAL AND METHODS

At present, the experimental station breeds 6 blue-bred karakul rams of the elite class, grey in color, imported from the Republic of Afghanistan in June 2019 (belonging to the Bukhara karakul sheep gene pool). For two months before the seasonal artificial insemination, experimental work was carried out to feed Afghan karakul rams on a ration basis using the hydroponics method. The
main purpose of the experiments is to introduce the effective use of Afghan rams in the creation of athars high quality karakul herds in limited liability companies specializing in karakul.

Experiments show that when growing barley grains on a farm, 7 liters of water are consumed for 7 days for 1 kg of ready-made feed at a temperature of 20 degrees. Every day the indoor air of the room was changed. The daily lighting in the room was 20-25 lux. By producing 20-25 kg of blue mass per cubic meter of area per week, it was possible to increase its nutritional value per kilogram of blue fodder to 0.40 feed units. In order to determine whether the female came to the burning of karakul wells and artificial insemination, probe rams were prepared in 2 different ways.

1. **Tie an apron.** In this method, the probe is released into the herd in the morning and evening for 1-1.5 hours by tying a special belt (apron) to the abdomen of the rams, and the lower part of the jaws of such rams is dyed in a special bag, and the dye is formed on the back were separated for artificial insemination in accordance with the color markings and fertilization was carried out.

2. **Surgical method.** In this method, 15–20 days before the start of the fertilization season, specially selected young, moderately obese rams are selected and their semen sac is cut 1–1.5 cm from the bottom, the excess semen is removed, the incision site is treated with the necessary drugs for several days, the injury heals in ten days a week. In such prepared rams, the sexual cycle process is fully preserved. This increases the search reflex of rams in comparison to ewes, which have a high and unrestricted ability to search, and is more prone to burning in the herd, as well as accelerating the sexual arousal of ewes.

III. RESULTS AND DISCUSSION

Proper feeding of pedigree rams in zootechnical work, the norm of various nutrients serves to ensure metabolism. In addition, in addition to pasture feeds, on the basis of the prescribed ration, lambs and lambs of the first fertilization age were given 0.3 kg of vaccinated feed per month. We recommend that breeding rams be fed on the basis of the following ration according to the feeding norm before fertilization. (Table 1).

<table>
<thead>
<tr>
<th>The ram's tag number</th>
<th>Body weight of a ram, kg</th>
<th>Feed units digestible protein</th>
<th>Ca, gr</th>
<th>P, gr</th>
<th>carotene gr</th>
<th>NaCl, gr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1632</td>
<td>70</td>
<td>1.3-1.5</td>
<td>100-120</td>
<td>5-7</td>
<td>3-4</td>
<td>12-15</td>
</tr>
<tr>
<td>1603</td>
<td>75</td>
<td>1.4-1.6</td>
<td>115-130</td>
<td>6-8</td>
<td>3.5-4.5</td>
<td>15-20</td>
</tr>
<tr>
<td>1616</td>
<td>65</td>
<td>1.1-1.3</td>
<td>90-110</td>
<td>4-5</td>
<td>2.5-3.0</td>
<td>10-15</td>
</tr>
<tr>
<td>1626</td>
<td>65</td>
<td>1.1-1.3</td>
<td>90-110</td>
<td>4-5</td>
<td>2.5-3.0</td>
<td>10-15</td>
</tr>
<tr>
<td>1651</td>
<td>60</td>
<td>1.0-1.2</td>
<td>80-100</td>
<td>3.5-4.5</td>
<td>2.2-2.5</td>
<td>9-12</td>
</tr>
<tr>
<td>1614</td>
<td>65</td>
<td>1.1-1.3</td>
<td>90-110</td>
<td>4-5</td>
<td>2.5-3.0</td>
<td>10-15</td>
</tr>
</tbody>
</table>

From the data in the table it can be explained that in relation to the live weight of breeding rams, the presence of a normal nutrient unit, digestible protein, chemical elements in the diet accelerates metabolism.

By the time of insemination of rams, the diet included protein and carotene-rich foods (2-3 eggs for each ram, 0.5-0.7 kg of carrots, 1-1.5 kg of alfalfa) and the rams were cared for according to the following schedule:

- Hay and fodder were given from 4 to 5 p.m.
- The pastures were grazed from 5 to 7 p.m.
- Sperm were collected between 7-11 p.m.
- Irrigated from 11-12.30 p.m.
- Rested from 12.30pm to 3pm.
- From 15 to 17 hours watered and grazed.
- Seeds were harvested from 5 to 6:30 p.m.
- Food was provided from 7 to 8 p.m.
In the herds of the Karakul Scientific Breeding Experimental Station in the autumn of 2020, artificial insemination was carried out in 1975 head of ewes. The composition of sperm in each ejaculate obtained from pedigree rams was examined under a microscope and recommended for fertilization based on the positive results obtained. In order to ensure that the motility of the tested sperm was not less than 80%, in order to organize an orderly mating, meadow pastures were allocated and experienced shepherds were appointed. During the breeding season, each ram had an average of 325-330 head of sheep. Each head of artificially inseminated ewes was recorded in accordance with the label numbers in the ejaculation journals kept for the respective herds. Cases of re-burning in sheep were observed in 8-10%, and artificial insemination was carried out in a timely manner.

IV. CONCLUSION

1. We recommend to all farms specializing in karakul breeding to feed pedigree rams on the basis of the above ration.

2. We believe that the male offspring of Afghan rams should be used by other farms in the future.

REFERENCES

